
Brief information about the project

Name of the project	AP15473256 «Investigation of the activity of promoted composites based on mesoporous aluminosilicates in the diesel fractions' dewaxing process».
Relevance	Today, due to the decrease in the reserves of medium and light oils, the amount of which, according to forecasts, will be insufficient to meet the required demand by 2035, the scientific community is faced with the issue of high-quality processing of heavy crude oil and its derivatives. This is especially true for Kazakhstan due to the predominance of reserves of highly paraffinic oils.
	One of the valuable fractions of paraffinic oils is the diesel fraction, which can be used as commercial fuel. However, the high content of normal alkanes (~10-40%) in the composition of the diesel fraction leads to a deterioration in the performance characteristics of the fuel and, as a result, the inability to use the diesel fraction without additional processing in the cold season at lower temperatures, which is critical for many regions of Kazakhstan with cold winters. In this regard, the process of hydroisodewaxing of the diesel fraction is increasingly used, because of which n-alkanes in the presence of catalysts are converted into branched alkanes and, as a consequence, the performance characteristics of diesel fraction are improved. Bifunctional catalysts based on zeolites and
	mesoporous materials promoted with transition metals have become widely used in this process. In connection with the foregoing, this work is devoted to the study of the activity of promoted catalysts based on mesoporous aluminosilicates and natural bentonite in the process of hydroisodewaxing of diesel fractions. The implementation of the study consists in the synthesis of bifunctional catalysts, the study of their physicochemical characteristics and testing their activity in the process of dewaxing diesel fractions, as well as the study of the hydrocarbon composition and
	performance characteristics of diesel fractions before and after the process.
Purpose	Study of the catalytic activity of bifunctional composites based on mesostructured aluminosilicates in the dewaxing process of Kazakhstani oil's diesel fractions.
Objectives	 Study of morphology and textural characteristics of synthesized aluminosilicates and composites based on them. Study of acid characteristics of synthesized composites based on mesoporous aluminosilicates. Study of the physical and operational characteristics and composition of diesel fractions before and after the process. Investigation of the effect of temperature and feed space velocity on the yield and selectivity of isoparaffins in the diesel fractions' dewaxing process in the presence of bifunctional composites based on mesoporous aluminosilicates. Study of the state of promoting additives on the surface of composites based on mesoporous aluminosilicates. Study of the influence of promoting additives on the activity of
	bifunctional composites based on mesoporous aluminosilicates in the diesel fractions' dewaxing process.

	• Study of physical and chemical characteristics of spent (after
	experience) composites based on mesoporous aluminosilicates.
Expected and	• Aluminosilicates and composites based on them will be
achieved results	synthesized and their morphological, textural and acid characteristics will
	be studied.
	• The state of promoting additives on the surface of composites
	based on mesoporous aluminosilicates will be studied.
	• The physical and operational characteristics and composition of
	diesel fractions before and after the process will be studied.
	• The effect of temperature and feed space velocity on the yield and
	selectivity of isoparaffins in the diesel fractions' dewaxing process in the
	presence of bifunctional composites based on mesoporous
	aluminosilicates will be studied.
	• The effect of promoting additives on the activity of bifunctional
	composites based on mesoporous aluminosilicates in the process of
D 1	dewaxing diesel fractions will be studied.
Research team	Abdildina Kamilla, PhD -
members with their	Researcher ID: B-9560-2017
identifiers (Scopus	https://www.webofscience.com/wos/author/record/971589
Author ID,	ORCID: 0000-0002-0474-5240
Researcher ID,	https://orcid.org/0000-0002-0474-5240
ORCID, if	Scopus Author ID: 57220029184
available) and links	https://www.scopus.com/authid/detail.uri?authorId=57220029184
to relevant profiles	Vassilina Gulzira, Cand. of Chem.Sc.,
	Researcher ID: A-5232-2015
	https://www.webofscience.com/wos/author/record/1012011
	ORCID: 0000-0002-5407-6751
	https://orcid.org/0000-0002-5407-6751
	Scopus Author ID: 55604181500
	https://www.scopus.com/authid/detail.uri?authorId=55604181500
List of publications	• Gulzira Vassilina, Kamilla Umbetkaliyeva (Abdildina), Nuray
with links to them	Oktar, Birce Pekmezci Karaman, Tursunay Vassilina. Characterization
	and catalytic activity of Ni/mesoporous aluminosilicate HMS and
	Mo/mesoporous aluminosilicate HMS in the conversion of n-hexadecane
	// Materials Today: Proceedings (Scopus). – 2020. – Vol. 31, Part 3. – P.
	580-583. https://doi.org/10.1016/j.matpr.2020.06.562
	• Vassilina G.K., Abdildina (Umbetkaliyeva) K.M., Abdrassilova
	A.K., Vassilina T.K., Zakirov Zh.Y. The mesoporous aluminosilicate
	application as support for bifunctional catalysts for n-hexadecane
	hydroconversion // Open Chemistry. – 2022. – V. 20. P.225-236.
	https://doi.org/10.1515/chem-2022-0134
	• Kamilla Abdildina , Gulzira Vassilina, Albina Abdrassilova, Ivan
	A. Klassen и др. The Role of Catalyst Promotive Additives and
	Temperature in the Hydroisodewaxing Process // J. Molecules 2023
	Vol. 28(22), – Р. 7598. (процентиль: 78, Q2)
	https://doi.org/10.3390/molecules28227598
Patents	-

